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Abstract7

Using a suitable notion of principal G-bundle, defined relative to an arbitrary cartesian8

category, it is shown that principal bundles can be characterised as adjunctions that stably9

satisfy Frobenius reciprocity. The result extends from internal groups to internal group-10

oids. Since geometric morphisms can be described as certain adjunctions that are stably11

Frobenius, as an application it is proved that all geometric morphisms, from a localic topos12

to a bounded topos, can be characterised as principal bundles.13

1. Introduction14

The main aims of this paper is to show that in any cartesian category C, principal15

G-bundles over an object X for an internal group G are the same thing as adjunctions16

C/X �� [G, C] over C that stably satisfy Frobenius reciprocity, provided the adjunction of17

connected components, �G � G∗ : [G, C] �� C, exists and itself stably satisfies Frobenius18

reciprocity. [G, C] is the category of objects of C equipped with a G action; i.e. the category19

of G-objects with G-homomorphisms between them.20

Geometric morphisms can be characterised as adjunctions between categories of locales21

that satisfy Frobenius reciprocity, [T10b]. So as an application to the case C = Loc, it22

follows that geometric morphisms Sh(X) � B(G), from the category of sheaves over23

a locale X to the topos of G-sets, for any localic group G, are the same thing as localic24

principal Ĝ-bundles, where Ĝ is the étale completion of G. This is a key relationship as it25

can be used to establish, for discrete G at least, the more well-known result that there is a26

classifying space for principal G-bundles; see [I96] for a description of how topos theoretic27

results about principal bundles relate back to more well-known topological results.28

Our main result easily generalises from internal groups to internal groupoids. It follows29

that any geometric morphism from a localic topos to a topos bounded over some base topos30

Set can be represented as a principal bundle.31

In the next section we recall some basic facts about the category [G, C] of G-objects and32

G-homomorphisms for a group G internal to a cartesian category C and define a notion of33

principal G-bundle over an object X of C.34

In the third section we prove our main result which shows how the notion of principal G-35

bundle can be related to stably Frobenius adjunctions. The proofs and techniques are simple36

as they only involve cartesian categories and various adjunctions. Our strategy is to first
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demonstrate the main result for the case of principal bundles over the terminal object 1 (i.e.37

X = 1) and then show how the case of general X can be obtained by applying the proof for38

X = 1 to the cartesian category C/X .39

The fourth section describes in summary how the main result generalises to groupoids.40

The fifth section describes how the main result can be applied to the case C = Loc, the41

category of locales, to give a description of geometric morphisms Sh(X) � BG for42

certain classes of localic groupoids G.43

The results apply equally to open localic groupoids and to proper localic groupoids. In44

fact, an axiomatic treatment of locale theory [T10a] reveals that the theory of ‘open’ prin-45

cipal bundles can be viewed as order dual to the theory of ‘proper’ principal bundles. The46

results here show that both theories of principal bundles have representations as Frobenius47

adjunctions. What is not clear is whether the theory of ‘proper’ principal bundles has any-48

thing like the depth of the more familiar theory of ‘open’ principal bundles.49

2. Principal G-bundles in a cartesian category50

We start with some basic definitions and results relative to a cartesian category, C. If51

(G, m) is an internal group then [G, C] is the category of G-objects, whose objects are52

pairs (A, ∗A) where A is an object of C and ∗A : G × A � A is a G-action; that is,53

satisfies the usual unit and associative diagrams. For example, (G, m) itself is a G-object;54

further for any object X of C, (X, π2) is an object of [G, C]; it is X with the trivial action.55

The morphisms f : (A, ∗A) � (B, ∗B) of [G, C] are morphisms f : A � B that56

commute with the actions, i.e. f ∗A = ∗B(I dG × f ). Sending any X to (X, π2) defines a57

functor G∗ from C to [G, C]. Its left adjoint, when it exists, is written �G
1 and must send58

(A, ∗A) to the coequalizer of π2, ∗A : G × A �� A. If �G exists then �G(G, m) = 159

because ! : G � 1 is a coequalizer of π2, m : G × G �� G (it is split by the identity60

e : 1 � G of G).61

The category [G, C] is cartesian; products and equalisers are created in C. (G, m) is a62

rather special object of [G, C]; for any other object (A, ∗A), (A, ∗A) × (G, m)� (A, π2) ×63

(G, m). To see this send an ‘element’ (a, g) of (A, π2) × (G, m) to (g ∗A a, g) and an ‘ele-64

ment’ (a, g) of (A, ∗A) × (G, m) to (g−1 ∗A a, g); it is easy to verify that this establishes an65

isomorphism in [G, C]. Although this argument, and arguments below, deploy ‘elements’ it66

is important to understand that this is just shorthand for defining and arguing about morph-67

isms in a category.68

If X is an object of C then the slice category, written C/X , is the category whose objects69

are morphisms f : Y � X and whose morphisms are commuting triangles. We will tend70

to use the notation Y f when considering the morphism f : Y � X as an object of C. Any71

morphism f : Y � X of C gives rise to an adjunction � f � f ∗ : C/Y �� C/X between72

slice categories where the right adjoint is given by pullback (and � f (Zg) = Z f g for a73

morphism g : Z � Y ). C/X is a cartesian category; limits are created in C. Coequalizers74

in C/X , when they exists, are created in C. If G = (G, m, e) is an internal group of C and75

X is an object of C then G × X is an internal group of C/X ; its multiplication is given by76

(G × G) × X
m×I dX� G × X and its unit is X

(e!X ,I dX )� G × X .77

1 The notation �0 � � is more usual than our �G � G∗; however, we choose to label this adjunction
with G, as we will be switching between different Gs.
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A morphism f : X � Y of C is an effective descent morphism if the pullback functor78

f ∗ : C/Y � C/X is monadic. Since f ∗ always has a left adjoint, by Beck’s monadicity

Q3

79
theorem, f is an effective descent morphism if and only if f ∗ reflects isomorphisms and C/Y80

has and f ∗ preserves coequalisers for any pair of f ∗-split arrows. For any internal group G81

in a cartesian category the morphism ! : (G, m) � 1 of [G, C] is an effective descent82

morphism. This can be observed because of the well-known fact that [G, C]/(G, m) � C83

(to see this send a morphism to its kernel in one direction and send an object X of C to the84

projection (X, π2)× (G, m) � (G, m) in the other). Under this equivalence the pullback85

functor (G, m)∗ : [G, C] � [G, C]/(G, m) is just the forgetful functor from [G, C] to C86

that forgets the group action; its left adjoint sends X to (G, m)× (X, π2) and this adjunction87

induces a monad on C; it is easy to see that [G, C] is by definition the category of algebras88

of this induced monad.89

An adjunction L � R : D �� C between cartesian categories satisfies Frobenius recipro-90

city provided the morphism L(R(X) × W )
(Lπ1,Lπ2)� L R X × LW

εX ×I dLW� X × LW is an91

isomorphism for all objects W and X of D and C respectively where ε is the counit of the92

adjunction. For any object X of C there is an adjunction L X � RX : D/R X �� C/X given93

by L X (Wg) = ‘the adjoint transpose of g’ and RX (Y f ) = R( f ). The original adjunction94

L � R is said to be stably Frobenius provided L X � RX satisfies Frobenius reciprocity95

for every object X of C. It is easy to verify that for any morphism f : X � Y of a96

cartesian category the pullback adjunction � f � f ∗ : C/X �� C/Y is stably Frobenius.97

For another example, if C has coequalisers that are stable under product (pullback) then98

G∗ : C � [G, C] has a left adjoint, �G , and the adjunction �G � G∗ satisfies Frobenius99

reciprocity (is stably Frobenius). Notice that both the property of satisfying Frobenius re-100

ciprocity and of being stably Frobenius are stable under composition of adjunctions. Given101

two adjunctions D
L��
R

C and D′ L ′
��

R′
C then any third adjunction F � U : D �� D′ is102

said to be over C provided L ′F = L; of course, in such circumstances U R′ � R by unique-103

ness of adjoints. The collection all adjunctions between D and D′ over C can be considered104

as a category with morphisms natural transformations between the left adjoints.105

Our first lemma shows that in certain situations adjunctions that satisfy Frobenius reci-106

procity and are over a base category C give rise to effective descent morphisms:107

LEMMA 2·1. Let G be an internal group in a cartesian category C such that G∗ : C �108

[G, C] has a left adjoint �G and the resulting adjunction satisfies Frobenius reciprocity.109

Let L � R : C �� [G, C] be an adjunction over C (i.e. �G L = I dC) which also sat-110

isfies Frobenius reciprocity. Write (P, ∗) for the G-object L1 and assume further that111

P � R(G, m). Then ! : P � 1 is an effective descent morphism.112

We will see in the next section that, in fact, the condition P � R(G, m) always holds.113

Proof. Firstly �G L1 = 1 by assumption that L � R is over C. So for any object X of C,114

�G(L1 × G∗ X)��G L1 × X � X ; i.e.115

G × P × X
∗×I dX�

π23

� P × X
π2� X

is a coequaliser diagram in C. Since this is a coequaliser for every X it is easy to see that116

P∗ : C � C/P reflects isomorphisms. So to complete the proof all we need to show is117

that if X
f�
g
� Y is pair of morphisms of C with the property that there is a split coequaliser118
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diagram119

P × X
I d× f�
I d×g

�
�

s

P × Y
q��
i

Q (*)

in C/P then there is a coequaliser Y
n� N of f and g in C with the property that P ×120

Y
I dP ×n� P × N is isomorphic to P × Y

q� Q.121

Since P � R(G, m) by applying L to (*) and the Frobenius reciprocity assumption we122

obtain a split coequaliser diagram:123

(G, m) × L X
I d×L f�
I d×Lg

�
�

s ′
(G, m) × LY

q◦���
i ′

L Q.

Since (G, m) � 1 is an effective descent morphism, there is a coequaliser diagram124

L X
L f�
Lg
� LY

t� (T, ∗T )

in [G, C] with the property that (G, m) × LY
I d×t� (G, m) × (T, ∗T ) is isomorphic to125

(G, m) × LY
Lq◦�� L Q. Because �G L = I dC and �G is a left adjoint, it follows that126

Y
�G (t)� �G(T, ∗T ) is a coequalizer in C of f ,g. Notice that (T, ∗T ) � L�G(T, ∗T ) be-127

cause L , as a left adjoint, preserves coequalisers. Finally, for any object W of C, morphisms128

Q � W correspond to morphisms P × Y � W that compose equally with I d × f129

and I d × g and these in turn correspond (under L � R, using W � RG∗W ) to morphisms130

(G, m) × LY � G∗W that compose equally with I d × L f and I d × Lg. These then131

correspond to morphisms (G, m) × (T, ∗T ) � G∗W since L Q � (G, m) × (T, ∗T ).132

Then, by adjoint transpose under �G � G∗, these correspond to morphisms �G((G, m) ×133

(T, ∗T )) � W . But134

�G((G, m) × (T, ∗T ))��G((G, m) × L�G(T, ∗T ))

��G((G, m) × (P, ∗) × G∗�G(T, ∗T ))

��G((G, m) × (P, π2) × G∗�G(T ∗T ))

��G((G, m) × G∗(P × �G(T, ∗T )))

��G(G, m) × P × �G(T, ∗T )

�P × �G(T, ∗T )

and so Q � P × �G(T, ∗T ) as required.135

We now define principal bundle relative to an arbitrary cartesian category. The definition at136

this level of generality appears to be originally in [K89].137

Definition 2·1. If G is an internal group in a cartesian category C then a principal G-138

bundle is a G-object (P, ∗) such that:139
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(i) ! : P � 1 is an effective descent morphism; and140

(ii) the morphism (∗, π2) : G × P � P × P of C is an isomorphism.141

The inverse of (∗, π2), if it exists, must be a map of the form (ψ, π2) for a morphism ψ :142

P × P � G. For any ‘elements’ b and b′ of B, ψ(b, b′) is the unique ‘element’ of G143

such that ψ(b, b′) ∗ b′ = b. ψ has a number of well-known properties that will be exploited144

below; for example, ψ(g ∗ p, p′) = gψ(p, p′) and ψ(p, g ∗ p′) = ψ(p, p′)g−1.145

The category of principal G-bundles is the full subcategory of [G, C] consisting of objects146

that are principal G-bundles.147

Definition 2·2. If G is an internal group in a cartesian category C and X is an object148

of C then a principal G-bundle over X is a G-object (P, ∗), together with a morphism149

f : P � X such that:150

(i) f ∗ = f π2; i.e. f (g ∗ p) = f (p) for any ‘elements’ g, p of G, P respectively;151

(ii) f : P � X is an effective descent morphism; and152

(iii) the morphism (∗, π2) : G × P � P ×X P of C/X is an isomorphism.153

Principal bundles are also known as torsors. In our general context of cartesian categories154

there is no real extra generality when talking about principal bundles over X in comparison155

to principal bundles:156

LEMMA 2·2. If C is a cartesian category, G an internal group and X an object of C, then157

(i) [G × X, C/X ] � [G, C]/(X, π2) and (ii) the category of principal G-bundles over X is158

isomorphic to the category of G × X principal bundles relative to C/X.159

Proof. (i) can be checked from the definitions and (ii) follows from (i).160

We will use this lemma to ease the proof of our main theorem, which is the purpose of the161

next section.162

3. A categorical relationship between principal bundles and Frobenius reciprocity163

We can now state and prove our main result for the case X = 1; this will be used in the164

proof for general X to follow.165

PROPOSITION 3·1. Say C is a cartesian category and G is an internal group with the166

property that the functor G∗ : C � [G, C] has a left adjoint �G such that �G � G∗167

satisfies Frobenius reciprocity. Then there is an equivalence between the category of prin-168

cipal G-bundles and the category of adjunctions L � R : C �� [G, C] over C that satisfy169

Frobenius reciprocity.170

Further any such adjunction is also stably Frobenius.171

Although the connection to principal bundles is not made explicit, one can combine [BLV11,172

theorems 2·15 and 5·7] to establish this Proposition.173

Proof. Say L � R : C �� [G, C] satisfies Frobenius reciprocity and has �G L = I dC .174

Let L1 = (P, ∗). Then L R(G, m) � (P, ∗) × (G, m), which we have observed already175

is isomorphic to G∗ P × (G, m). By assumption that �G L = I dC we have that for any176

object X of C, X � RG∗ X and so further L R(G, m) � L(1 × RG∗ R(G, m) � (P, ∗) ×177

G∗ R(G, m). But �G(G, m)�1 and �G(P, ∗) = 1, the latter because �G L1 = 1. It follows178

that R(G, m) � P because �G � G∗ satisfies Frobenius reciprocity, and this exhibits an179
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isomorphism G × P � P × P . By Lemma 2·1, !P : P � 1 is an effective descent180

morphism; therefore (P, ∗) is a principal bundle.181

In the other direction, say we are given a principal bundle (P, ∗). We will use ψ : P ×182

P � G for the map that exists because G × P � P × P . Define L : C � [G, C] by183

L X = (P, ∗) × (X, π2). Define R : [G, C] � C by sending (A, ∗A) to the coequaliser of184

P × A defined by the arrows185

G × P × A
∗×I dA �

(I dP ×∗A)(I dP ×i×I dA)(τ×I dA)
� P × A

where τ : G× P � P ×G is the twist isomorphism and i : G � G is the inverse of G.186

In other words R(A, ∗A) is defined to be the tensor P⊗G A where (g∗ p)⊗a = p⊗(g−1∗Aa)187

for any ‘elements’ a, p and g of A, P and G respectively. This coequaliser exists because188

an easy diagram chase shows that it is isomorphic to �G((P, ∗) × (A, ∗A)). There is an189

‘evaluation’ map ev : P × (P ⊗G A) � A defined by (b′, b ⊗ a) 	→ ψ(b′, b) ∗A a. This190

is well defined because the coequaliser that defines P ⊗G A is stable under products; this is191

because �G � G∗ satisfies Frobenius reciprocity. Using properties of ψ it can be checked192

that ev : (P, ∗)×(P⊗G A, π2) � (A, ∗A); i.e. the evaluation map is a G-homomorphism.193

We now check that L is left adjoint to R. Say we are given an object X of C and an object194

(A, ∗A) of [G, C], then send any map f : X � P ⊗G A to the G-homomorphism195

P × X
I dP × f� P × (P ⊗G A)

ev� A.

On the other hand given any G-homomorphism g : (P, ∗) × (X, π2) � (A, ∗A) notice196

that the map197

P × X
(π1,g)� P × A

⊗� P ⊗G A

composes equally with ∗× I dX : G×P×X � P×X and π2× I dX : G×P×X � P×198

X and so factors through π2 : P × X � X (because �G((P, ∗)× (X, π2))��G(P, ∗)×199

X � 1 × X ). This defines a map X � P ⊗G A. To check that this establishes a natural200

bijection between C(X, P ⊗G A) and [G, C]((P, ∗) × (X, π2), (A, ∗A)) is a routine applic-201

ation of the properties of ψ : P × P � G. Therefore L � R. Observe that the conunit of202

the adjunction is given by the evaluation map ev : (P, ∗) × (P ⊗G A, π2) � (A, ∗A).203

We must show that L � R satisfies Frobenius reciprocity; i.e., that the map (P, ∗)× (X ×204

P⊗G A, π2) � (P, ∗)×(X, π2)×(A, ∗A) given by (p, x, p′⊗a) 	→ (p, x, ψ(p, p′)∗Aa)205

has an inverse. It is easy to check using the properties of ψ that the assignment (p, x, a) 	→206

(p, x, p ⊗ a) defines a G-homomorphism and is the required inverse.207

Also observe that �G(P, ∗) = 1 because ! : P � 1 is a regular epimorphism. There-208

fore �G L X = �G((P, ∗) × (X, π2))� X and so L � R is over C as required.209

It is clear that we have now established a categorical equivalence between principal G-210

bundles and adjunctions. This is because any L � R over C that satisfies Frobenius recipro-211

city is uniquely determined by L1 and, in the other direction, the principal bundle associated212

with the adjunction (P, ∗) × ( , π2) � P ⊗G ( ) is (P, ∗).213

Finally we prove that, in fact, the adjunction L � R is stably Frobenius. Let (B, ∗B) be an214

object of [G, C]. We must check, for any G-homomorphism n : (A, ∗A) � (B, ∗B)215

and any f : X � P ⊗G B that the canonical map (P, ∗) × (X ×P⊗G B P ⊗G216

A, π2) � ((P, ∗) × (X, π2)) ×(B,∗B ) (A, ∗A) is an isomorphism. Given that we have217

already established an isomorphism (P, ∗)×(X × P ⊗G A, π2)� (P, ∗)×(X, π2)×(A, ∗A)
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this is just a question of verifying that the subobject of (P, ∗) × (X × P ⊗G A, π2) determ-218

ined by {(p, x, p′ ⊗ a)|px ⊗ bx = p′ ⊗ n(a)} corresponds under this isomorphism to the219

subobject {(p, x, a)|ψ(p, px) ∗B bx = n(a)} of (P, ∗) × (X, π2) × (A, ∗A) (where we are220

using px ⊗ bx for f (x)). It must also be verified that the isomorphism is over (B, ∗B). Both221

easily follow again from the properties of ψ .222

In the proof above we did not use the fact that ! : P � 1 is an effective descent223

morphism in the construction of a Frobenius adjunction from the principal bundle (P, ∗);224

we only exploited the fact that it is a regular epimorphism. It follows that as a side result we225

immediately have the following lemma:226

LEMMA 3·2. Say G is an internal group in a cartesian category C, (P, ∗) a G-object such227

that the morphism (∗, π2) : G × P � P × P of C is an isomorphism and ! : P � 1228

a regular epimorphism. Then, ! : P � 1 is an effective descent morphism and (P, ∗)229

is a principal G-bundle (provided G is such that G∗ has a left adjoint and the resulting230

adjunction satisfies Frobenius reciprocity).231

Our main result is now an easy application of the case X = 1:232

THEOREM 3·3. Let C be a cartesian category and G an internal group with the property233

that the functor G∗ : C → [G, C] has a left adjoint �G such that �G � G∗ is stably234

Frobenius, and let X be an object of C. Then there is an equivalence between the category235

of principal G-bundles over X and the category of adjunctions L � R : C/X �� [G, C] that236

are stably Frobenius and are over C (i.e. �G L = �X ).237

Proof. By the proposition all that is required is a proof that the category of adjunc-238

tions L ′ � R′ : C/X �� [G × X, C/X ] over C/X that satisfy Frobenius reciprocity is239

equivalent to the category of adjunctions L � R : C/X �� [G, C] over C that are stably240

Frobenius. To see that this is sufficient to complete the proof recall from above that241

[G, C]/(X, π2) � [G × X, C/X ] and so the assumption that �G � G∗ is stably Frobenius242

implies that (G × X)∗ : C/X → [G × X, C/X ] has a left adjoint and the resulting adjunction243

satisfies Frobenius reciprocity, allowing the proposition to be applied. Now any adjunction244

L � R : C/X �� [G, C] over C factors as245

C/X
��X��
�∗

X

C/X × X
L(X,π2)��
R(X,π2)

[G, C]/(X, π2)
�(X,π2)��
(X,π2)

∗ [G, C]

and so gives rise to an adjunction L (X,π2)��X � �∗
X R(X,π2) which can be seen to be over C/X ;246

this adjunction satisfies Frobenius reciprocity because L � R is stably Frobenius (and the247

property of satisfying Frobenius reciprocity is preserved by composition of adjunctions).248

In the other direction say we are given L ′ � R′ : C/X �� [G × X, C/X ] over C/X that249

satisfies Frobenius reciprocity. Then by the proposition L ′ � R′ is stably Frobenius and so250

the composite adjunction251

C/X
L ′
��

R′
[G, C]/(X, π2)

�(X,π2)��
(X,π2)

∗ [G, C]
is stably Frobenius. It can be readily checked that this composite adjunction is over C and252

that the two constructions establishes an equivalence between two categories of adjunctions.253

COROLLARY 3·4. For an adjunction L � R : C/X �� [G, C] over C the following are254

equivalent:255
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(1) L � R is stably Frobenius;256

(2) LG∗ X � RG∗ X satisfies Frobenius reciprocity; and257

(3) LG∗ Z � RG∗ Z satisfies Frobenius reciprocity for every object Z of C.258

We do not use these characterisations below; they are included here because they can be259

applied to show that geometric morphisms between bounded toposes over a base topos Set260

can be characterised as Loc-indexed adjunctions (in the sense of indexed category theory,261

e.g. [J02, B1]). It is hoped to make this the subject of a separate paper.262

Proof. Clearly (1) implies (3) implies (2) because (3) and (2) are weaker conditions than263

(1). (2) implies (1) because if LG∗ X � RG∗ X satisfies Frobenius reciprocity then so does the264

adjunction C/X �� C/X × X �� [G, C]/G∗ X . This latter adjunction, as we have remarked265

in the proof of the theorem, is over C/X and so we may apply the ‘Further’ part of the266

Proposition 3·1 to conclude that it is stably Frobenius.267

In the case C = Set, the generic principal G-bundle, (G, m), corresponds to the étale point268

of the topos of G-sets; the right adjoint constructed in the Theorem is then the usual forgetful269

functor (forget the G-action).270

4. Extending to groupoids271

The above definitions and results can easily be generalised from groups to groupoids. If272

G = (G1 ×G0 G1
m� G1

d0�
d1

� G0) is an internal groupoid in a cartesian category C then273

((G1)d0, m) is itself a ‘special’ object of [G, C] in the sense that ((G1)d0, m) × (Ag, ∗A) �274

((G1)d0, m) × G
∗ A where G

∗ : C → [G, C] is the functor that send an object X of C to the275

G-object (π1 : G0 × X � G0, d1 × I dX ). The data for a principal G-bundle additionally276

includes a map g : P � G0 that is invariant under the action. The proofs above go277

through essentially unchanged, so we content ourselves with stating the following theorem:278

THEOREM 4·1. Let C be a cartesian category and G an internal groupoid with the prop-279

erty that the functor G
∗ : C → [G, C] has a left adjoint �G such that �G � G

∗ is stably280

Frobenius and let X be an object of C. Then there is an equivalence between the category281

of principal G-bundles over X and the category of adjunctions L � R : C/X �� [G, C] that282

are stably Frobenius and are over C.283

If C = Set then this Theorem captures an instance of Diaconescu’s theorem, because prin-284

cipal G-bundles are the same thing as G-torsors in this case. However, the applications that285

we focus on here are to geometric morphisms.286

5. Application to geometric morphisms287

We now apply our results to the case C = Loc, the category of locales and so G is a288

groupoid internal to Loc; i.e. a localic groupoid. See, for example, [J02, part C] for relevant289

background material. Our aim is to explain how to apply the results above to show that290

geometric morphisms f : Sh(X) � BG are the same thing as principal Ĝ-bundles over291

X , where Sh(X) is the topos of sheaves for a locale X and BG is the topos of G-equivariant292

sheaves; that is, the full subcategory of [G, Loc] consisting of G-objects, (Ag, ∗A) such that293

g : A � G0 is a local homeomorphism. Ĝ is the étale completion of G; see, e.g. [J02,294

C5·3·16] for a description of étale completion. We will show that we cannot hope to apply the295

result for arbitrary localic groupoids G = (G1

d0�
d1

� G0), but we can for the two important296
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special cases of (i) an open and (ii) a proper localic groupoid; that is, d0 (equivalently d1)297

is (i) open and (ii) proper. To apply Theorem 4·1 we need to make two connections. Firstly298

we need to recall that geometric morphisms f : F � E between any two elementary299

toposes F and E can be represented as stably Frobenius adjunctions � f � f ∗ between the300

corresponding categories of locales (that is, between LocF and LocE ). Secondly we need to301

recall what conditions are required to ensure that the equivalence LocBG � [Ĝ, Loc] holds302

(it is well known that LocSh(X) � Loc/X ; e.g. [J02, theorem C1·6·3]). The following two303

propositions address how to make these two connections in turn.304

PROPOSITION 5·1. For any two elementary toposes F and E there is a categorical equi-305

valence between the category of geometric morphisms from F to E and the category of306

adjunctions L � R : LocF
�� LocE that are stably Frobenius and have R preserving the307

Sierpiński locale.308

Proof. This is essentially the main result of [T10b]. If f : F E� is a geometric morph-309

ism between elementary toposes then there is a ‘pullback’ adjunction � f � f � between the310

category of locales in F and the category of locales in E , with the right adjoint being given311

by pullback in the category of elementary toposes. [T10b] shows how [J02, C2·4·11] can312

be used to easily show that the adjunction � f � f � satisfies Frobenius reciprocity for any313

geometric morphism f and, moreover, shows that any such adjunction, L � R, arises in this314

way from a uniquely determined geometric morphism, provided R preserves the Sierpiński315

locale and its internal distributive lattice structure. But for any locale X over E there is a316

geometric morphism fX : ShF ( f ∗ X) � ShE(X) obtained by pulling back along the loc-317

alic geometric morphism Sh(X) � E . [T10b, lemma 3·2] confirms the easily observed318

fact that the pullback adjunction � fX � ( fX )� is (� f )X � ( f ∗)X (under LocSh(X) � Loc/X)319

and so � f � f � is stably Frobenius since (� f )X � ( f �)X satisfies Frobenius reciprocity for320

each X .321

For all localic groupoids G, the functor G
∗ : Loc → [G, Loc] has a left adjoint since Loc322

has coequalisers. But the resulting adjunction does not necessarily satisfy Frobenius reci-323

procity. To see this, consider a regular epimorphism f : X � Y in the category of locales324

that is not stable under products (so, there exists a locale Q such that X × Q
I dQ× f� Y × Q325

is not a regular epimorphism - see [P97, p39, preamble to lemma 4·4], for a specific ex-326

ample of such f and Q). Let G be the groupoid determined by the kernel pair of f . Then327

�G(1) = Y and G
∗ Q is (X × Q, (X ×Y X) × Q

π2×I dQ� X × Q), and so �GG
∗ X is the328

coequaliser of the product of the kernel pair of f and Q. By assumption this coequaliser329

is not Y × Q and so we cannot have �G(1 × G
∗(Q)) � �G(1) × Q and �G � G

∗ does330

not satisfy Frobenius reciprocity. So, ensuring that �G � G
∗ is stably Frobenius must re-331

quire some further assumptions of G. The following proposition describes two cases of such332

further assumptions:333

PROPOSITION 5·2. If G is an open or proper localic groupoid then:334

(i) LocBG � [Ĝ, Loc] over Loc; and335

(ii) the adjunction �
Ĝ

� Ĝ
∗ : [Ĝ, Loc] �� Loc is stably Frobenius.336

Proof. (i) [J02, theorem C5·1·5] shows that locales descend along geometric morphisms337

f : F � E , whenever f is an open surjection or a proper surjection. For any localic338

groupoid G there is a surjective geometric morphism d : Sh(G0) � BG (whose in-339

verse image is the forgetful functor), and it is easy to see that the definition of ‘locales340
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descend along d’ (see [J02, the preamble to lemma 5·1·2]) is equivalent to the assertion that341

LocBG � [Ĝ, Loc] because Ĝ is by definition the localic groupoid determined by pulling342

back d against itself [J02, C5·3·16].343

[J02, lemma C5·3·6 ] shows that for an open (or proper) localic groupoid G the geometric344

morphism d is an open (or proper) surjection and so LocBG � [Ĝ, Loc] as required.345

The forgetful functor [Ĝ, Loc] � Loc/G0 corresponds to d∗ : LocBG
� Loc/G0346

under this equivalence and since the forgetful functor is monadic, it reflects isomorphisms.347

Using γG for the geometric morphism BG � Set, observe that d∗γ ∗
G

� G∗
0 and so the348

equivalence LocBG � [Ĝ, Loc] can be seen to be over Loc since G0 is the locale of objects349

of Ĝ.350

(ii) is clear from (i) because γG induces a stably Frobenius adjunction �γG
� γ ∗

G
:351

LocBG

�� Loc by the last Proposition and we have observed that γ ∗
G

maps to Ĝ
∗ under352

LocBG � [Ĝ, Loc]353

Alternatively, (ii) can be proved directly. If G is open (or proper) then so is its étale354

completion [J02, C5·3·16]. But asserting that the adjunction �G � G
∗ is stably Frobenius355

can be seen to be equivalent to asserting that the coequaliser determined by �G(Ag, ∗A) is356

pullback stable. This is well known to be the case if the groupoid is open or proper because357

the coequaliser determined by �G(Ag, ∗A) must be open (e.g. [J02, proposition C5·1·4])358

and open (and proper) coequalisers are pullback stable.359

Remark 5·3. It is worth noting that the direct proof of (ii) can be done axiomatically360

(using an axiomatic system similar to [T10a]). This shows that statements and results about361

open maps are formally dual to statements and results about proper maps. It also follows362

that we could apply our main result to [G, Loc], without going to the étale completion; but363

the cost is that [G, Loc] will not necessarily be a category of locales for some topos. As364

future work it may be worth examining whether axiomatic approaches to locale theory are365

stable under the formation of the category of G-objects, where G is not necessarily étale366

complete. This could provide a category of ‘spaces’ more granular than the category of367

bounded toposes and still capable of classifying principal bundles.368

We now state and prove our main application.369

THEOREM 5·4. Let G be a localic groupoid and X a locale.370
(i) If G is open, there is an equivalence between the category of geometric morphisms371

Sh(X) � BG and the category of principal Ĝ-bundles over X. The principal372

bundle maps f : P � X that arise in this way are always open surjections.373

(ii) If G is proper, there is an equivalence between the category of geometric morphisms374

Sh(X) � BG and the category of principal Ĝ-bundles over X. The principal375

bundle maps f : P � X that arise in this way are always proper surjections.376

Any Grothendieck topos is equivalent to BG for some open localic groupoid [J02, C5·2·11],377

so (i) provides a principal bundle description of the points (with localic domains at least) of378

arbitrary Grothendieck toposes. In fact one can always choose an étale complete open localic379

groupoid to represent a Grothendieck topos [J02, C5·3·16], and so for any Grothendieck380

topos E there is a localic groupoid G such that geometric morphisms Sh(X) � E (over381

Set) are the same things as principal G-bundles over X . (i) is originally observed in [B90]382

using different methods. (i) restricted to étale groupoids; that is, groupoids such that d0383

(equivalently d1) is a local homeomorphism, is covered in [I96] and [I91].384
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Proof. (i) and (ii) together: the proof is essentially a question of applying our main385

theorem (Theorem 4·1), given the last two propositions. Notice for any adjunction386

Loc/X �� LocBG that is over Loc, the right adjoint must preserve the Sierpiński locale be-387

cause both γ ∗
G

: Loc � LocBG and X∗ : Loc � Loc/X preserve the Sierpiński388

locale.389

For any principal bundle ( f : P � X, ∗ : G1 ×G0 P � P) determined by either390

the equivalence of (i) or (ii), it should be clear that the morphism f is an open (or proper)391

surjection. This is because it is determined by pullback of the open (proper) surjection d :392

Sh(G0) � BG and open (proper) surjections are pullback stable.393

6. Further work394

There are two areas where more detailed further work should easily yield specific395

results:396

(1) Results of Moerdijk [I90] show how geometric morphisms can be described as certain397

locales with actions, and so are similar to our results. In that paper the actions are of a398

localic category, rather than a localic groupoid and so it is not immediately clear how to399

relate Moerdijk’s results back to ours. However the key construction of [I90] also uses a400

tensor, similarly to our results, so there appears to be a close relationship.401

(2) In this paper we have only looked at geometric morphisms Sh(X) � BG over402

Set, rather than general geometric morphisms F � BG. For F bounded over Set we can403

always find an open groupoid H so that such general geometric morphisms can be represen-404

ted as stably Frobenius adjunctions between [H, Loc] and [G, Loc]. It is expected that in a405

category whose objects are stably Frobenius adjunctions over some base cartesian category406

C (and whose morphisms are stably Frobenius adjunctions over C), any object of the form407

[H, C] is a suitable coequalizer (perhaps of the simplicial diagram determined by H). In this408

way it should be straightforward to extend the results from Sh(X) to an arbitrary bounded409

topos F , so providing a description of general geometric morphisms as a locale over two410

bases (H0 and G0) with two (interacting) groupoid actions such that one of the actions is411

principal.412
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