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Abstract

It it shown that geometric morphisms between elementary toposes
can be represented as certain adjunctions between the corresponding cat-
egories of locales. These adjunctions are characterized by (i) they preserve
the order enrichment and the Sierpiński locale, and (ii) they satisfy Frobe-
nius reciprocity.

1 Introduction

Given a geometric morphism f : F → E between elementary toposes there
is an adjunction Σf a f∗ : LocF À LocE between the category of locales
in F and the category of locales in E . The right adjoint of this adjunction,
f∗ : LocE → LocF , is given by pullback in the category of toposes; see [J02]
where the notation f! is used in place of Σf . If one replaces toposes with the
categories of locales, the question arises as to whether we can offer a categorical
characterization of all the adjunctions Σf a f∗? This would show us what the
correct notion of geometric morphism should be in such a context. It is this idea
of identifying the correct notion of geometric morphism in the context where
toposes are replaced with their categories of locales that motivates the work.

Our first result is that the adjunction Σf a f∗ satisfies the Frobenius reci-
procity condition. It is well known that this adjunction is order enriched and
that f∗ preserves the Sierpiński locale. Our main result is to show that, con-
versely, for any order enriched adjunction L a R : LocF À LocE such that R
preserves the Sierpiński locale and for which Frobenius reciprocity holds, there
exists a geometric morphism f : F→E , unique up to natural isomorphism, such
that R ∼= f∗ (and so also, L ∼= Σf ). This provides a representation theorem for
geometric morphisms.
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2 Outline contents

The next section recalls some results from locale theory and topos theory, es-
sentially outlining how the adjunction Σf a f∗ : LocF À LocE is constructed
for any geometric morphism f : F → E . The representation of dcpo homomor-
phisms between frames as natural transformations is recalled and we also recall
a technical step in the proof of this representation that is required for our main
result.

The following section then proves that Σf a f∗ always satisfies Frobenius
reciprocity by application of a known Beck-Chevalley result in topos theory.
The main result of the paper then follows which consists of a proof that, con-
versely, this provides a characterization of when such an adjunction arises from
a geometric morphism.

Let us summarise the main argument which amounts to constructing a ge-
ometric morphism given an order enriched adjunction L a R : LocF À LocE
satisfying Frobenius reciprocity and with R preserving the Sierpiński locale. In
broad terms we make the following observations. Firstly such an adjunction
extends contravariantly to dcpo homomorphisms. This is because dcpo homo-
morphisms between frames can be represented as natural transformations and
it is this categorical interpretation of dcpo homomorphisms that combines with
the Frobenius reciprocity condition to allow the required extension. Next we
observe that the existence of this extension implies that R preserves discrete lo-
cales since the property of being discrete can be characterized in terms of dcpo
homomorphisms. Since the objects of any topos occur as the discrete locales
in its internal category of locales we have a candidate for the inverse image of
a geometric morphism f : F → E . To obtain its direct image we observe that
every object of a topos occurs as an equalizer of dcpo homomorphisms between
frames. Since the direct image, if it exists, must preserve such an equalizer, it is
clear how we should define the direct image. It then becomes routine to check
that we have indeed defined a geometric morphism.

3 Topos theory background

Let A be a complete lattice, then A is a frame provided
∨
{a ∧ t | t ∈ T} = a ∧

∨
T

for any subset T ⊆ A and any element a ∈ A. For example, the opens of
a topological space form a frame. A frame homomorphism is a map between
frames that preserves arbitrary joins (

∨
) and finite meets (∧). For example the

inverse image of any continuous map between topological spaces defines a frame
homomorphism. If a complete lattice is a frame the notation ΩX is used, where
X is known as the corresponding locale. This comes from the definition of the
category of locales:

Loc ≡ Frop
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where Fr is the category of frames. The notation for a frame homomorphism
from ΩX to ΩY is Ωf where f : Y → X is the corresponding locale map. The
category of locales is generally considered to be a reasonable category in which
to do topological space theory. Probably the nicest categorical aspect of locales
is that it is stable under slicing in the sense that

Loc/X' LocSh(X); Equation 1

that is, the category of locales internal to the category of sheaves over a locale
X is equivalent to the category of locales sliced at X ([JT84]). This is not
true of the category of topological spaces, but neatly extends the well known
topological relationship

LH/X'Sh(X);

where LH is the category of topological spaces with local homeomorphisms as
morphisms. The category Sh(X) embeds in LocSh(X) as the full subcategory of
discrete locales where, of course, a locale Y is discrete if and only if ΩY ∼= PA
for some set A, where PA denotes the power set1 on A. The complete lattice
PA is the free suplattice on A, where a suplattice homomorphism is required to
preserve arbitrary joins.

The property of being discrete can be characterized using open maps. A
locale map f : X → Y is open provided Ωf has a left adjoint ∃f for which the
Frobenius condition holds; that is,

∃f (a ∧ Ωf(b)) = ∃f (a) ∧ b

for any a ∈ ΩX and b ∈ ΩY . It can be shown that a locale map is open if and
only if the direct image of any open sublocale is open, so this definition is well
motivated. Further, under mild separation axioms the usual topological notion
is recovered, see the remarks before lemma C1.5.3 of [J02] for details. It can be
shown that a locale is discrete if and only if both the unique map ! : X → 1 and
the diagonal ∆X : X ↪→ X ×X are open ([JT84]).

The category of locales has finite products, indeed all limits. This is because
the theory of frames is suitably algebraic and so colimits can be described using
generators and relations in the usual manner. An explicit description of a frame
constructed from its generators and relations is given by Johnstone in II 2.11 of
[J82]. Frame coproduct is given by suplattice tensor, [JT84]; for a locale X the
diagonal map is given by

Ω∆X : ΩX ⊗ ΩX −→ ΩX

a⊗ b 7−→ a ∧ b.

Broadly, locales behave well under change of base. If f : F → E is a
geometric morphism between elementary toposes then f∗ preserves the property
of being a frame (and of being a frame homomorphism). The direct image

1Note that we use the term set to mean an object of a topos.
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functor of f , f∗ : F → E , therefore gives rise to a functor, denoted Σf : LocF →
LocE2. If we define f∗ : LocE → LocF by

ΩFf∗X ∼= FrF 〈f∗GX | f∗RX〉

where GX and RX are generators and relations for an arbitrary frame ΩEX of
E , then f∗ is right adjoint to Σf ([JT84]). It is known, for example C2.4 of
[J02], that in this situation

ShF (f∗X)
fX−→ ShE(X)

↓ γf∗X ↓ γX

F f−→ E

is a pullback diagram in the category of toposes. The term pullback functor
is therefore applied to f∗. Since fX is a geometric morphism it too induces
an adjunction ΣfX

a f∗X : LocF/f∗X À LocE/X for which we will need the
following explicit description:

Lemma 3.1 For any geometric morphism f : F → E
(i) f∗X(W

g→ X) ∼= f∗W
f∗g→ f∗X and

(ii) ΣfX (Y h→ f∗X) ∼= the adjoint transpose of h.

Proof. We only need to prove (i) since (ii) then follows by uniqueness of
adjoints. But Theorem C2.4.11 of [J02] proves that Beck-Chevalley holds for
the diagram of adjunctions

LocF/f∗X À LocE/X
↑↓ ↑↓

LocF À LocE

and this forces (i) so we are done.
Note that the adjunction Σf a f∗ is order enriched, meaning that the homset

natural bijections
LocE(ΣfW,X) ∼= LocF (W, f∗X)

are order isomorphisms.
For any locales X and Y , dcpo homomorphisms from ΩX to ΩY (i.e. di-

rected join preserving maps) are in order isomorphism with

Nat[Loc( ×X, S),Loc( × Y, S)]

where Loc( ×X, S) : Locop → Set is the presheaf for any locale X and Nat[ ] is
the collection of natural transformations ordered componentwise in the obvious
manner. Of course S is the Sierpiński locale, i.e. that locale whose frame of

2The Σf notation is consistent with its usual usage as the ‘post compose with f ’ functor
when f is a geometric morphism between localic toposes since in such a situation LocF and
LocE are both slices via Equation 1.
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opens is the free frame on the singleton set subject to no relations. It is an
order internal meet semilattice in Loc meaning that the meet operation is right
adjoint to the diagonal. Note that by construction f∗ will always preserve the
Sierpiński locale.

This isomorphism is an extension, to dcpo homomorphisms, of the mapping:

Ωf 7−→ Loc( × f, S)

for any frame homomorphism Ωf : ΩY → ΩX. Since it can be verified using
Yoneda’s lemma that Loc( × Y, S) is the exponential Loc( ,S)Loc( ,Y ) the no-
tation SY is used for the presheaf Loc( × Y, S); it is not generally an object of
Loc.

The result on the representation of dcpo homomorphisms as natural trans-
formations is originally in [VT04], though the construction in [T04] is the one
that we are using in this paper since we need to call on:

Lemma 3.2 For any locale X there is an order isomorphism between the poset
of monotone maps B → ΩX and

Loc(Idl(B)×X, S)

for any poset B. This order isomorphism is natural in B and in dcpo homo-
morphism between ΩX.

Here Idl(B), the ideal completeion of B, is that locale whose frame of opens
is UB, the set of upper closed subsets of B. It is called the ideal completion
since its point are in order isomorphism with the ideals (lower closed, directed)
subsets of B. Note that UB is the splitting of the idempotent ↑: PB → PB.
Proof. This result, without the naturality statement, is well known lattice
theory. For the naturality component consult [T04] (Lemmas 51 and 54 together
with the remarks after Definition 52).

4 Σf a f ∗ satisfies Frobenius reciprocity

Our first task is to show that the adjunction Σf a f∗ satisfies Frobenius reci-
procity for any geometric morphism f : F → E . Let us recall (e.g. A.1.5.8 of
[J02]) the definition of this condition on an adjunction.

Definition 4.1 An adjunction L a R : D À C between cartesian categories

satisfies Frobenius reciprocity provided the map nX,W : L(R(X)×W )
(Lπ1,Lπ2)−→

LRX × LW
εX×IdLW−→ X × LW is an isomorphism for all objects W and X of

D and C respectively.

Theorem 4.2 Given a geometric morphism f : F → E, the induced order
enriched adjunction Σf a f∗ : LocF À LocE satisfies Frobenius reciprocity.
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Proof. This is again an application of Theorem C2.4.11 of [J02] since

ShF (f∗X)
γf∗X

−→ F
↓ fX ↓ f

ShE(X)
γX

−→ E
is also a pullback diagram of toposes. Therefore Beck-Chevalley also holds for
the square

LocF/f∗X À LocF
↑↓ ↑↓

LocE/X À LocE
of adjunctions.

The Beck-Chevalley condition, evaluated at a locale W over F , implies that
φW : ΣfX

(γf∗X)∗W → (γX)∗ΣfW is an isomorphism where φW is the adjoint
transpose, via ΣfX a f∗X , of

(γf∗X)∗W
(γf∗X)∗(ηW )−→ (γf∗X)∗f∗ΣfW

∼=→ f∗X(γX)∗ΣfW

and η is the unit of the adjunction. However this morphism is

f∗X ×W
Idf∗X×ηW−→ f∗X × f∗ΣfW

(f∗π1,f∗π2)
−1

−→ f∗(X × ΣfW )

and since it can be checked that this is the adjoint transpose of nW,X we are
done.

5 Properties of adjunctions between categories
of locales

We now exploit an assumption of Frobenius reciprocity to extend any order
enriched adjunction L a R : LocF À LocE to dcpo homomorphisms. This
extension is available since dcpo homomorphisms between frames can be repre-
sented as natural transformations. Let Loc

op
denote the category whose objects

are frames and whose morphisms are dcpo homomorphisms. It is equivalent to
the full subcategory of [Locop,Set] whose objects are the presheaves SX . (In
fact this category is equivalent to the opposite of the Kleisli category of the
double power monad, see [JV91], [V04] and [VT04] for background; however we
shall not use the double power locale construction in this paper.)

Proposition 5.1 For any order enriched adjunction L a R : LocF À LocE
which satisfies Frobenius reciprocity and for which there exists an isomorphism
RSE ∼= SF , there exists an order enriched adjunction R

op a L
op

: LocF
op À

LocE
op

such that the squares

LocF
S( )
F

↪→ LocF
op

L ↓a↑ R L
op ↓`↑ R

op

LocE
S( )
E

↪→ LocE
op
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commute; i.e. R
op a L

op
extends L a R contravariantly.

Proof. We must show how to define R
op

and L
op

on natural transformations.
Say α : SX

E → SX′
E define R

op
(α) by

LocF (W ×RX,SF )
[R

op
(α)]W−→ LocF (W ×RX ′,SF )

↓∼= ↑∼=
LocF (W ×RX, RSE) LocF (W ×RX ′, RSE)

↓∼= ↑∼=
LocE(LW ×X, SE)

αLW−→ LocE(LW ×X ′,SE)

for any locale W of F . Certainly the vertical morphisms are isomorphisms by
assumption. Similarly define L

op
by sending any β : SW

F → SW ′
F to L

op
(β)

defined by

LocE(X × LW,SE)
[L

op
(β)]X−→ LocE(X × LW ′, SE)

↓∼= ↑∼=
LocF (RX ×W,RSE) LocF (RX ×W ′, RSE)

↓∼= ↑∼=
LocF (RX ×W,SF )

βRX−→ LocF (RX ×W ′, SF )

That R
op

is left adjoint to L
op

follows by applying S( ) to the triangular identities
of the adjunction L a R. It is clear that the functors R

op
and L

op
are order

enriched and so too, therefore, is the adjunction.
A key application of this extension is that with it R must preserve certain

properties which we now establish.

Proposition 5.2 R preserves the property of being a discrete locale and so
defines a functor R : E → F .

Proof. Given that R, as a right adjoint, preserves limits it is sufficient to
check that R preserves open maps as we have outlined above how the property
of being a discrete locale can by characterized in terms of having open finite
diagonals. Say f : X → Y is an open map, then there is ∃f : ΩEX → ΩEY left
adjoint to ΩEf and satisfying

ΩEX ⊗ ΩEY
∃f⊗1−→ ΩEY ⊗ ΩEY

1⊗ ΩEf ↓
ΩEX ⊗ ΩEX ↓ Ω∆Y

Ω∆X ↓
ΩEX

∃f−→ ΩEY

∃f , as a left adjoint, is certainly a dcpo homomorphism and so R
op

(∃f ) is well
defined and is a left adjoint to R

op
(ΩEf) as it is stipulated that L a R is order
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enriched and so R
op

is order enriched. Noting that R
op

(∃f )⊗ 1 = R
op

(∃f ⊗ 1)
as both are left adjoint to

R
op

(ΩEf ⊗ 1) = R
op

(ΩE(f × 1))
= ΩF (R(f × 1))
= ΩF (Rf ×R1))
= R

op
(ΩEf)⊗ 1,

we have, by applying R
op

to the commuting diagram, that Rf is open and we
are done.

We now need a technical lemma which will ease the proof of the next property
of R.

Lemma 5.3 If h : X ′ → X is a locale map in E and b : Y → SE an open of Y ,
another locale over E, then consider the natural transformation Shπ1

E ( ) uSE b :
SX
E → SX′×Y

E defined by

LocE(Z ×X, SE) → LocE(Z ×X ′ × Y, SE)
I 7→ uSE (I(IdZ × h)π12, bπ3)

for each Z, where uSE is the meet operation of the Sierpiński locale. Then R
op

preserves Shπ1
E ( ) uSE b; i.e.

R
op

(Shπ1
E ( ) uSE b) ∼= S(Rh)π1

F ( ) uSF Rb.

Proof. If W is a locale over F then [R
op

(Shπ1
E ( )uSE b)]W (I ′), for I ′ : W×RX →

RSE , is equal to ˜JnW,X′×Y (IdW × (Rπ1, Rπ2)−1) where J is

uSE (Ĩ ′n−1
W,X(IdLW × h)π12, bπ3)

and (̃ ) denotes taking adjoint transpose via L a R. We are passing through the
isomorphism RSF ∼= SE without notation. Checking that this gives uSF (I ′(IdW×
Rh)π12, Rbπ3) as required is a routine diagram chase. Note that uSF ∼= R(uSE )
since both are right adjoint to the diagonal.

Our final property of R that can be established because of its extension to
R

op
, is that R commutes with the ideal completion construction Idl( ).

Proposition 5.4 If (B,≤B) is a poset of E then R(IdlE(B)) ∼= IdlF (RB).

Proof. ΩEIdl(B) is the splitting of the idempotent ↑B : PB → PB. This
is certainly a dcpo homomorphism and so we have but to check that R

op
(↑B

) =↑RB . However the natural transformation corresponding to ↑B is given by

SB
E
Sπ1
E ( )uSE≤B−→ SB×B×B×B

E
S∆B×B
E−→ SB×B

E
∃π2→ SB

E .
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The first term in the composition is preserved by R
op

using the lemma (take
π1 : B × B → B as h, ≤B= b and B × B as Y ). The second term is preserved
since R is a right adjoint and so preserves the diagonal. The third term is
preserved by R

op
since we have checked that this extension is order enriched

and so preserves the property of being a left adjoint.

6 The representation theorem

Discrete locales are closed under finite limits and so the restricted functor R :
E → F is cartesian: it is our candidate for the inverse image of a geometric
morphism. Finding its right adjoint, and so proving that it is an inverse image
of a geometric morphism, exploits the following lemma:

Lemma 6.1 Any object A in a topos exists as an equalizer

A ↪→ ΩXA

gA−→
−→
hA

ΩYA

of frames where gA and hA are dcpo homomorphisms.

Proof. Take ΩXA = PA, the power set of A, and take ΩYA = P (A×A)×Ω
(which is the frame of the locale (A×A) + 1). Recall Ω = P1, and 1 = {∗} the
singleton set. Let gA(I) = (I × I, {∗}) and let hA(I) = ({(i, i) | i ∈ I}, {∗ | ∃i ∈
I}). It is routine to verify that these are both dcpo homomorphisms and that
A is their equalizer.

It therefore makes sense to define R∗ : F → E by sending an object A of F
to the equalizer in E of the diagram

L
op

ΩFXA

L
op

gA−→
−→

L
op

hA

L
op

ΩFYA

where the ΩFXA, gA etc. are constructed as in the lemma (carried out in the
topos F).

Proposition 6.2 R∗ is right adjoint to R.

Proof. We need to show that morphisms φ : B → R∗A of E are in natural
bijection with morphisms RB → A of F . By construction of R∗A such φ are
in bijection with morphisms φ : B → L

op
ΩFXA such that L

op
gAφ = L

op
hAφ.

But morphisms B → L
op

ΩFXA are in bijection with LocE(L(XA)×B, SE) by
applying Lemma 3.2 (treating B as a poset with a discrete ordering). Then
using the naturality of that lemma and noting the commutative squares
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LocE(L(XA)×B, SE)
(L

op
gA)B→
→

(L
op

hA)B

LocE(L(YA)×B, SE)

∼= ↓ ↓ ∼=

LocF (XA ×R(B), SF )
(gA)R(B)→
→

(hA)R(B)

LocF (YA ×R(B), SF )

we obtain a bijection with elements of LocF (XA × R(B), SF ) and hence to
morphisms R(B) → ΩEXA that compose equally with gA and hA.

We now state and prove the main result.

Theorem 6.3 For any two elementary toposes F and E there is an equivalence
between the category of geometric morphisms F to E and the category of order
enriched adjunctions L a R between LocF and LocE which satisfy Frobenius
reciprocity and for which RSE ∼= SF .

Proof. We have just shown how to construct a geometric morphism from an
adjunction satisfying Frobenius reciprocity and for which RSE ∼= SF . It is clear
from construction that if the adjunction between locales is of the form Σf a f∗

for a geometric morphism f then f is recovered. This is because the pullback
functor and the inverse image functor are isomorphic both viewed as actions on
discrete locales.

In the other direction say we are given an adjunction L a R. The corre-
sponding geometric morphism has been constructed: R a R∗. This geometric
morphism gives rise to an adjunction satisfying Frobenius reciprocity, its left
adjoint, denoted L′ : LocF → LocE say, being defined by setting

ΩEL′(W ) ≡ R∗ΩFW

for any locale W of F . But for any poset B of E , using the notation PosE for
the category of posets over E , we have

PosE(B, R∗ΩFW ) ∼= PosF (RB,ΩFW )
∼= LocF (W × IdlF (RB),SF )
∼= LocF (W ×RIdlEB, SF )
∼= LocE(L(W )× IdlEB, SE)
∼= PosE(B, ΩEL(W ))

and so L ∼= L′ using the naturality, in B, of Lemma 3.2.

7 Conclusions

The intended application of this result is a new categorical account of the the-
ory of geometric morphisms. If the category of locales can be axiomatised (see,
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for example, [T05]) then it is clear from the representation theorem just offered
what the definition of morphism between such categories should be, i.e. order
enriched adjunctions that preserve the (suitably axiomatised) Sierpiński object
and satisfying Frobenius reciprocity. If such an account is viable then it would
have an advantage over the current view of geometric morphisms, the advantage
being that open and proper maps would be dual concepts (the duality is ob-
tained by reversing the order enrichment). This would represent a step towards
formally showing that the theory of proper geometric morphisms and the theory
of open geometric morphisms are, in fact, dual aspects of the same theory thus
formalising categorically a relationship that has been, so far, only intuitively
understood.
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